前言

采用物质面作为垂直坐标面的最大优点是运动准二维,可以很大程度上避免垂直平流,且有利于保持位涡守恒。但是缺点是需要处理下垫面等位温面与地表的交叉。

等熵坐标下的方程组

状态方程

α=RdTp \alpha = \frac{R_d T}{p}

位温定义θ\theta

T=θ(pp0)Rdcp T = \theta \left( \frac{p}{p_0} \right)^{\frac{R_d}{c_p}}

推导一些微分关系式,沿等位温面的水平梯度

θT=θθ(pp0)Rdcp=T(p0p)RdcpRdcp(p0p)1Rdcpp01θp \nabla_\theta T = \theta \nabla_\theta \left( \frac{p}{p_0} \right)^{\frac{R_d}{c_p}} = T \left( \frac{p_0}{p} \right)^{\frac{R_d}{c_p}} \frac{R_d}{c_p} \left( \frac{p_0}{p} \right)^{1 - \frac{R_d}{c_p}} p_0^{-1} \nabla_{\theta} p

经过整理,得

cpθT=αθp c_p \nabla_\theta T = \alpha \nabla_\theta p

类似时间导数

cpTt=αpt c_p \frac{\partial T}{\partial t} = \alpha \frac{\partial p}{\partial t}

再推导得垂直梯度

cpTθ=αpθ+Π c_p \frac{\partial T}{\partial \theta} = \alpha \frac{\partial p}{\partial \theta} + \Pi

其中Π\Pi为Exner函数

Π=cp(pp0)Rdcp \Pi = c_p \left( \frac{p}{p_0} \right)^{\frac{R_d}{c_p}}

热力学方程

此时的热力学方程变为了垂直坐标速度

θ˙=QΠ \dot{\theta} = \frac{Q}{\Pi}

其中QQ为单位质量的加热率。

静力平衡方程

ϕθ=αpθ \frac{\partial \phi}{\partial \theta} = - \alpha \frac{\partial p}{\partial \theta}

Mθ=Π \frac{\partial M}{\partial \theta} = \Pi

其中MM为Montgomery势

M=cpT+ϕ M = c_p T + \phi

连续方程

p=θθpp \nabla_p = \nabla_\theta - \nabla_\theta p \frac{\partial}{\partial p}

ω=DpDt=(t+v)θp+θ˙pθ \omega = \frac{D p}{D t} = \left( \frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla \right)_\theta p + \dot{\theta} \frac{\partial p}{\partial \theta}

利用气压坐标的连续方程

pv+ωp=0 \nabla_p \cdot \mathbf{v} + \frac{\partial \omega}{\partial p} = 0

mt+θ(mv)+mθ˙θ=0 \frac{\partial m}{\partial t} + \nabla_\theta \cdot \left( m \mathbf{v} \right) + \frac{\partial m \dot{\theta}}{\partial \theta} = 0

其中m=pθm = - \frac{\partial p}{\partial \theta}

动量方程

气压梯度力在高度、气压、经典气压地形追随坐标系下的形式为

 1ρzp,pϕ,1ρσpσϕ \ - \frac{1}{\rho} \nabla_z p, \quad - \nabla_p \phi, \quad - \frac{1}{\rho} \nabla_\sigma p - \nabla_\sigma \phi

从高度坐标推等熵坐标的气压梯度力

 1ρzp=1ρθp+pzθz=1ρθpθϕ \ - \frac{1}{\rho} \nabla_z p = - \frac{1}{\rho} \nabla_\theta p + \frac{\partial p}{\partial z} \nabla_\theta z = - {\color{red}\frac{1}{\rho} \nabla_\theta p} - \nabla_\theta \phi

其中红色项需要进一步推导(带入理想气体状态方程和位温定义式)

1ρθp=RdTpθp=Rdpθ(pp0)Rdcpθp=θRdcpcp(pp0)1(pp0)Rdcpθpp0=θθcp(pp0)Rdcp=θθΠ=θθΠ \begin{matrix} {\color{red}\frac{1}{\rho} \nabla_\theta p} & = \frac{R_d T}{p} \nabla_\theta p = \frac{R_d}{p} \theta \left( \frac{p}{p_0} \right)^{\frac{R_d}{c_p}} \nabla_\theta p \\ & = \theta \frac{R_d}{c_p} c_p \left( \frac{p}{\color{blue}p_0} \right)^{-1} \left( \frac{p}{p_0} \right)^{\frac{R_d}{c_p}} \nabla_\theta \frac{p}{\color{blue}p_0} \\ & = \theta \nabla_\theta c_p \left( \frac{p}{p_0} \right)^{\frac{R_d}{c_p}} = \theta \nabla_\theta \Pi = {\color{cyan} \nabla_\theta \theta \Pi} \end{matrix}

则等熵坐标系下的气压梯度力为

 1ρzp=θ(θΠ+ϕ)=θM \ - \frac{1}{\rho} \nabla_z p = - \nabla_\theta \left(\theta \Pi + \phi\right) = - \nabla_\theta M

其中MM是干静力能,或称为Montgomery势。从气压坐标推导也可以得到同样的结果

 pϕ=θM \ - \nabla_p \phi = - \nabla_\theta M

水平动量方程为

DvDt=fk×vθM+F \frac{D \mathbf{v}}{D t} = - f \mathbf{k} \times \mathbf{v} - \nabla_\theta M + \mathbf{F}

参考文献

  • Yueh-Jiuan G. Hsu and Akio Arakawa, 1990: Numerical Modeling of the Atmosphere with an Isentropic Vertical Coordinate. Monthly Weather Review, 1990, 118, 1933-1959.